Friday, 13 January 2017

Filtre À Moyenne Mobile À 4 Points

Moyenne mobile Cet exemple vous enseigne comment calculer la moyenne mobile d'une série temporelle dans Excel. Un avearge mobile est utilisé pour lisser les irrégularités (pics et vallées) pour reconnaître facilement les tendances. 1. Tout d'abord, jetez un oeil à notre série chronologique. 2. Sous l'onglet Données, cliquez sur Analyse des données. Remarque: ne trouve pas le bouton Analyse des données Cliquez ici pour charger le complément Analysis ToolPak. 3. Sélectionnez Moyenne mobile et cliquez sur OK. 4. Cliquez dans la zone Plage d'entrée et sélectionnez la plage B2: M2. 5. Cliquez dans la zone Intervalle et tapez 6. 6. Cliquez dans la zone Plage de sortie et sélectionnez la cellule B3. 8. Tracez un graphique de ces valeurs. Explication: parce que nous définissons l'intervalle sur 6, la moyenne mobile est la moyenne des 5 points de données précédents et le point de données actuel. En conséquence, les crêtes et les vallées sont lissées. Le graphique montre une tendance à la hausse. Excel ne peut pas calculer la moyenne mobile pour les 5 premiers points de données car il n'y a pas assez de points de données antérieurs. 9. Répétez les étapes 2 à 8 pour l'intervalle 2 et l'intervalle 4. Conclusion: Plus l'intervalle est grand, plus les sommets et les vallées sont lissés. La réponse en fréquence d'un système LTI est la DTFT de la réponse impulsionnelle, La réponse impulsionnelle d'une moyenne mobile L-échantillon est Puisque le filtre de moyenne mobile est FIR, la réponse de fréquence se réduit à la somme finie. Nous pouvons utiliser l'identité très utile pour écrire la réponse de fréquence comme où nous avons laissé ae minus jomega. N 0 et M L moins 1. On peut s'intéresser à l'ampleur de cette fonction afin de déterminer quelles fréquences passent par le filtre sans atténuation et qui sont atténuées. Ci-dessous un graphique de l'ampleur de cette fonction pour L 4 (rouge), 8 (vert) et 16 (bleu). L'axe horizontal va de zéro à pi radians par échantillon. Notez que dans les trois cas, la réponse en fréquence a une caractéristique passe-bas. Une composante constante (fréquence zéro) dans l'entrée passe par le filtre sans atténuation. Certaines fréquences plus élevées, telles que pi 2, sont complètement éliminées par le filtre. Cependant, si l'intention était de concevoir un filtre passe-bas, alors nous n'avons pas très bien fait. Certaines des fréquences plus élevées sont atténuées seulement par un facteur d'environ 110 (pour la moyenne mobile à 16 points) ou 13 (pour la moyenne mobile à quatre points). Nous pouvons faire beaucoup mieux que cela. Le diagramme ci-dessus a été créé par le code Matlab suivant: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)) (1-exp (-iomega)) H8 (18) Iomega8)) (1-exp (-iomega)) tracé (oméga, abs (H4) abs (H8) abs (1-exp (-iomega) H16)) axe (0, pi, 0, 1) Copie Copyright 2000- - Université de Californie, Berkeley


No comments:

Post a Comment